



Hübner, A.; Dreuse, H.; Nowak, S.. – Ellrich, Weimar casea-gips.de



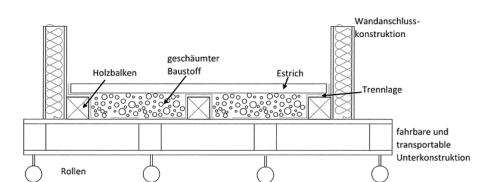
#### **Aufgabe**

Erforschung eines geschäumten Calciumsulfat-Baustoffs und der dafür geeigneten Applikationstechnologie für die speziellen Anwendungen

#### Verbundprojekt SULFOAM

Calciumsulfate – Gips foam = Schaum

Laufzeit 01.11.2014 - 31.10.2017 + Zuwendungsneutrale Verlängerung bis 30.04.2018


GEFÖRDERT VOM





#### Anwendungen

1. Sanierung von Geschossdecken unter Kaltdächern hinsichtlich Brand- und Wärmeschutz



2. Materialverträgliche Sanierung sulfathaltiger Bauwerke und Bauteile

3. Einsatz als Ausgleichs- und Dämmschicht unter schwimmenden Estrichen im Neubau





### **Applikation**

- 1. Herstellung des Binderleimes aus dem vorkonfektionierten Trockenmörtelprodukt (Zyklus 1 in der Herstellungsanlage)
- 2. Herstellung des Schaumes aus der Schaumbildnerlösung (Zyklus 2)
- 3. Mischen zum fertigen Gipsschaummörtel (Zyklus 3)
- 4. Verpumpen und Einbauen









# Anforderungen

| Horizontale Anwendung                                                                                                      | Vertikale Anwendung                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Hochwertiges Bindemittel –<br>niedriger w/b-Wert                                                                           | Preiswertes Bindemittel – maximal reduzierter W/B-Wert                                                       |
| kommerzielles Calciumsulfat-<br>Fließestrichcompound<br>( <b>Anhydrit oder Alpha-HH</b> ) als<br>Trockenmörtel<br>+ Schaum | definiert gealterter Beta-HH<br>mit Zusatzmitteln<br>(Trockenmörtel)<br>+ Schaum                             |
| Schnelle Austrocknung Hohe Wärmedämmung Festigkeit wegen Begehbarkeit                                                      | Minimaler W/B-Wert<br>Sedimentationsstabil<br>angepasste Dichte,<br>Festigkeitsprofil und<br>Einfüllvermögen |



#### **Innovationen**

- > Senkung Wärmeleitfähigkeit und der Rohdichte
  - Einsatz geeigneter Schaummittel/Porenbildner
- > Senkung des Wasserbedarfs
  - künstliche Alterung
  - Kornbandoptimierung
  - Einsatz geeigneter Additive
  - Bindung des Anmachwassers durch
- > Erarbeitung der Applikation
  - Schaumerzeugung
  - Verpumpen
  - Baustellentests

#### dazu

- -Laborbegleitung und Eignungstest
- -Dokumentation





#### Herausforderungen

# Wie weit lässt sich der Wasseranspruch durch Alterung und Fließmittel senken?

| Bindemittel                                 | Anhydrit<br>III [%] | BET<br>[m²/g] | W/B aus<br>Einstr. | Anwendbarer minimaler <b>W/B-</b> |
|---------------------------------------------|---------------------|---------------|--------------------|-----------------------------------|
| Schachtofen-Stuckgips                       | 8,3                 | 7,1           | 0,73               | Wert mit PCE-Fließmittel          |
| Schachtofen-Stuckgips, industriell gealtert | 0                   | 6,1           | 0,7                | 0,50                              |
| Drehofen-Stuckgips                          | 18 - 22             | 8,7           | 0,71               |                                   |
| Drehofen-Stuckgips, industriell gealtert    | 0                   | 4,0           | 0,58 –<br>0,63     | 0,35                              |

Binderleim aus gealtertem Beta-HH vergleichbar im Wasseranspruch mit Anhydritleim oder Alpha-HH Leim

Alterung besonders effektiv bei Halbhydrat, welches Anhydrit AllI in höheren Mengen aufweist!




#### Herausforderungen

#### Höhere Fließmittelwirkung:

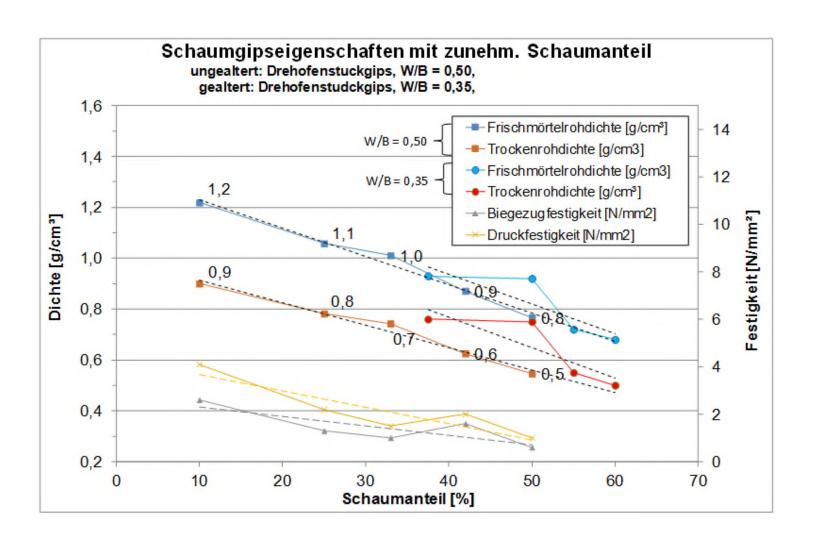
- Effizientes PCE-Fließmittel
- Berücksichtigung des höherem pH-Wertes (Kalkzugabe)
- Wechselwirkungen mit anderen ZM → VZ, SB, LP → Einfluss auf die Eigenschaften



#### Herausforderungen



Bildunterkante: 2,5 cm Bindemittelleim-Schaum-Verhältnis (RT):


1:1 1:1,5

-Mit zunehmendem Bindemittelleim : Schaum-Verhältnis werden die Porendurchmesser größer und die Wandungen dünner und instabiler.

-Bis 60% Schaum (1:1,5) wird die Fließfähigkeit kaum beeinflusst.



#### Produkteigenschaften





#### Produkteigenschaften

Trockenrohdichte zwischen 0,4 - 0,9 g/cm<sup>3</sup>

Druckfestigkeiten 1- 4 N/mm²

Biegezugfestigkeiten 0,4 – 2 N/mm²

Wärmeleitfähigkeit 0,11- 0,25 W/m\*K

- 1. Festigkeiten sind im Wesentlichen von eingestellter Dichte abhängig.
- 2. Art und Dauer des Mischens haben erheblichen Einfluss auf die Produkteigenschaften.
- 3. Stabilität des Schaumes von Art des Schaumbildners abhängig.



# Horizontale Anwendung : Holzbalkendecke





# Vertikale Anwendung: Mauerwerksverfüllung





# Danke an das Team!

Saskia Nowak

Heike Dreuse

Dr. Wolfgang Zier

Dr. Hans-Bertram Fischer

Ralf Röder

Matthias Leeke

Holger Schmidt

Sören Blankenburg

Dr. H.-U.Kothe

Maxim Dovgun

FIB Weimar

MFPA Weimar

MFPA Weimar

FIB Weimar

**VEP Plauen** 

AML

Bennert

Bennert

Casea

Casea

und

Dr. Ralf Fellenberg

**VDI** 

